
INFORMATION AND COMMUNICATION TECHNOLOGIES ENGINEERINGGRADUATION PROJECT REPORTThesis Title
Administration and Student Affairs

System
SupervisorsProf. Sameh A.SalemProf. Claudio FornaroDr. Paolo Prinetto

StudentsAhmed Adel Awad.Hany Abd EL-Samad.Ahmed Hisham Saad.Amro Salem Hassan.Ramy Saad Mohareb.
Academic year 2010/11

1

Administration and Student Affairs System

Project Team:

1- Amro Salem Hassan:
-Database Design and Security.
-Student Module.
-Shared in Admin Module.

2- Ramy Saad Mohareb:
-Constructing ER Model Using SQL Developer Datamodeler
(Oracle 2010 release).
-Professor Module.
-Shared in Admin Module.

3- Hany Abd El-Samad:
-Database Creation Scripts.

4- Ahmed Adel Awad:
-Control Module.

5- Ahmed Hisham Saad:
-Graduate Module.

2

Index

Part I : Modeling the Problem.

Chapter 1 : Introduction: Page
1.1- Introducing the Problem. 4
1.2- Graphical Representation of the Project. 5
1.3- Deeper Look into the Database. 8
1.4- Modules and Layers of the Client Application. 10
1.5- Products Used in the Project. 16

Part II : Solving the Problem.

Chapter 2: Amro Salem Contribution:
2.1- Designing the Implementation. 19
2.2- Identifying the Users of the System and Creating
Corresponding Roles. 24
2.3- Some Functions of the Student Module. 26
2.4- Important Features of the Student Module Java
Code. 29
2.5- Some Functions of the Admin Module. 33

Chapter 3: Ramy Saad Contribution:
3.1- Some Functions of the Professor Module. 37
3.2- Important Features of the Professor Module Java
Code. 42
3.3- Important Features of the Admin Module. 49
3.4- The Java Mail API. 52

Chapter 4: Hany AbdElSamad Contribution:
4.1- Creating Tables. 54
4.2- Enable Row Movement Feature. 57

Chapter 5: Ahmed Awad Contribution. 58

Chapter 6: Ahmed Hisham Contribution. 83

3

Chapter 1
Introduction

1.1- File VS Computerized System:

Due to the increasing number of students applying to
Helwan/Uninnetuno Engineering Degree, it became almost impossible to
separately manage the requests of those students. There are several
solutions for this problem. One of the most competing solutions is
implementing a three-tier system (Data server - Application server -
Clients). This solution requires a lot of resources: at least three up-to-
date server machines, at least two dedicated data servers, and a cooling
system. Since those requirements were difficult to allocate, and since
there were a lack in resources, another solution was considered.

The solution we chose to implement is a two-tier system which
consists of a dedicated database, and a specially constructed Java
Client Application. The upside of this solution is that the processing is no
more centralized. On the contrary, the client application consumes the
resources of the user running it locally. The only thing that is centralized
is the database. The trade off was harder programming to manage
parallel execution problems, and resources (processor and memory)
consumption.

We managed to manipulate the database through Java Client
Application by using JDBC API offered by Oracle for connecting and
retrieving data from data sources.

The resource consumption was minimized by utilizing parallel
processing through the Threading API of the Java platform. Also the
event driven nature of the desktop application made minimizing the
resource consumption easier, since only the process that the user
initiates will be using the resources.

The choice of Java Platform (Java programming language and
APIs) was made based on supporting a solution for the problem of
diversity of platforms. Since the two-tier architecture requires installing
the client application on the users PCs (which may have different
platforms), the portability of the system has been a major issue. The
Java Platform solves this problem by providing different JVMs (Java
Virtual Machines) for different architectures. So the Java bytecode
resulting from compiling the Java source codes could run on any
platform regardless how it is implemented. So as a conclusion, the Java
Platform was chosen to overcome the interoperability issue resulting
from the different platforms that would be running the client application.

4

1.2- A Graphical Representation of the Project:

The static IP is a fixed IP address given to a cloud terminal. If the
static IP was not used in the system it would have been impossible for
the client application to recognize the server over the cloud. Any terminal
accessing the cloud is normally assigned a dynamic IP that changes
periodically or whenever the connection is terminated. With this situation
the possible solutions are either to construct a virtual private network
(VPN) between the clients and the database, or to assign a fixed IP to
the database so that whenever a client is calling the database, this IP
address could be used to establish the connection. The problem with the
VPN was that whenever a new client is introduced to the system, the

5

network administrator must add this client to the VPN manually using the
MAC address. So it is obvious that the dynamicity of the system would
have been unaccomplished if this solution was implemented. On the
other hand, the solution of the static IP put no overhead for establishing
a fixed closed network. Besides the static IP solution is by far more
compatible with configuring the database listener. The disadvantage of
the static IP was the vulnerability for unauthorized access. Using the
Oracle database helped us overcoming this disadvantage on the server
side, since the Oracle database utilizes multiple security features. Using
the Java Platform helped us overcoming this problem on the client side,
since the Java Platforms implements the Sandbox Security Model, which
requires authentication whenever a connection is requested from a
cloud.

Database Listener is an application offered by Oracle and
bundled with their database server. The listener continuously checks for
connections coming over a TCP/IP port. Oracle’s Net Manager is used to
configure the listener.

6

There were multiple protocols that could be used achieve
successful communication over the cloud: UDP, TCP, and Oranet. The
TCP was chosen specifically because by far the TCP is the most
compatible communication protocol used in computer networks.
Additionally the TCP is perfectly compatible with both the database
listener and the JDBC API . Dividing the data to be communicated into
small segments called packets, the TCP creates messages to be
communicated over the cloud.

JDBC is an API provided by Oracle to achieve the communication
link between client applications and the database. The JDBC provides
an interface between the client application and one end of the TCP
channels, so basically translates Java strings into SQL queries that
could be understood by the data-server and translates back the result
returned by the database into ResultSet objects that could be
understood by JRE.

7

1.3- Deeper Look into the Database:

A large organization such as a university contains a large number
of entities. Each entity is correlated to the other entities by a relationship.
Relationships between entities defined the way each entity will affect and
be affected by the other entities. When constructing the database the
designer is supposed to figure out a mapping between the entities
existing in the environment to be modeled and the tables of the database
modeling this environment. Such mapping should represent each one of
those entities into a table, the columns of this table carries the attributes
of the entity. As an example when modeling the employees of an
organization a table would be created with its columns carrying the
attributes that describe each of the employees. So the table would look
like:

8

Each one of these attributes is bounded by natural conditions, for
example a hundred years old employee cannot be hired. These natural
boundaries are modeled in the database through constraints.
Constraints are also used to enforce the business process rules. For
example in the case of a university a student cannot enroll in a course
which he hasn’t passed its prerequisites. The types of constraints
available in Oracle database are:

1- Primary Key constraints: The primary key is used to identify
any row in the system. Primary key enforces the no two rows can have
the same value for a column also rows cannot have null values in these
column.

2- Unique constraints: Unique constraints are the same as
primary key constraints with the exception that they accept null values.

3- Not Null constraints: Not Null constraints enforce the rows to
have values in the column to which they are applied.

4- Check constraints: Check constraints demands that the values
inserted should adhere to a given condition specified in the creation of
the constraint.

5- Foreign Key: This kind of constraints is used to construct
relationships. As foreign keys requires that rows inserted in a child table
cannot have values in the column that refer to the parent table that does
not already exists in the parent table.

Some of the constraints included in our database design and
resulted from the modeling done to the business process of the
university are:

9

1.4- Layers and Modules of the Client Application:

The system was divided into five layers each of these layers was
implemented separately. Each layer can communicate only either with
the directly successor layer or with the directly predecessor layer.

10

The Data-Layer contains database which consists of the physical
data files and the logical representation of those files in the form of
tables, views, constraints, and sequence. The database also contains
logical entities that maintain the security and access control to the data,
for example users, and roles. The database also carries metadata
represented in the Data Dictionary in the form of views which contains
information about all the objects, users, roles … etc in the database.
Data Dictionary can only be manipulated by the database administrator.

The Session-Layer wraps up the operations that could be done
against the database and offers to the upper layers an interface or API
that can be used to manipulate the data regardless where the data is
placed. Some of the operations offered by the session-layer are execute
select and execute DML:

11

The executeDML() process is used by the services-layer
whenever a DML command is to be executed. The method takes a string
argument representing the SQL DML statement and returns the number
of rows affected by this statement. The executeSelect() method is used
by the services layer whenever a SQL select statement is to be
executed. This method takes a string argument and returns a ResultSet
object that represents the result returned by the database.

As a sum up the session layer wraps up the database
manipulation and hides this manipulation from the upper layers. The
main advantages provided by this layer are:

1- Offline retrieval of data in case of connection loss.
2- Minimize the time of manipulating the database over the cloud
by keeping track of the query results.
3- Enforces the software concept of data hiding and abstraction.
The services layer constructs the SQL queries and translates the

operations initiated by the user through the GUI into SQL code.
Whenever the handling layer is making a query against the database to
retrieve results from the database to be represented as GUI forms,
actually the services layer is manipulated. In other words, the services
layer acts as an intermediate between the handling layer and the data
retrieval code. Classes of this layer includes:

12

The most important feature of this layer is that it provides a
portable API for sending emails. This feature built based on the Java
mail API, which is the open source extension provided by Oracle. The
Java mail API is used to send emails using external SMTP servers like
Gmail, Hotmail, and Yahoo.

The Handling-layer is used to manage the GUI forms by hiding
the services initiated by buttons and whatsoever from the final GUI
representation of these services. In other words the handling layer maps
every button, form, GUI table, and list to a service provided to the
system by the services layer. For example pressing search in the search
courses panel of the GUI layer:

13

This process is mapped into the search courses process in the
services layer by the handling layer as follow:

public void actionPerformed(ActionEvent evt)
 {
 Services.StudentSearchCourses search;
 if(evt.getActionCommand().equalsIgnoreC

ase("search"))
 search = new

Services.StudentSearchCourses(manipulate,
 parent.getCourseID().equalsI

gnoreCase("") ? null : parent.getCourseID(),
 parent.getCourseName().equal

sIgnoreCase("") ? null : parent.getCourseName(),

14

 null,
 parent.getCredits(),

parent.getNumOfPrequisits(),
 parent.getStatus1().equalsIg

noreCase("any") ? null : parent.getStatus1(),
 parent.getStatus2().equalsIg

noreCase("any") ? null : parent.getStatus2());

 else
 search = new

Services.StudentSearchCourses(manipulate, null,
null, null, -1, -1, null, null);

 ViewCurrentCourses view = new

ViewCurrentCourses(parent.getOurParent());
 view.setTable(search.getResult());
 parent.getTabbedPane().setComponentA

t(parent.getTabbedPane().getSelectedIndex() ,
view);

 }

Each of the GUI layer and the handling layer is divided into five
separate modules:

1- The Student module: Is made to be used by the students of the
university using the system. It offers multiple functions that the student
may be using to update, view, enroll … etc in a course or exam.

2- The Professor module: Is made to be used by professors
independently from the administrator. As an example he can schedule a
midterm, quiz or final exam to be seen by the whole users of the system
after the scheduling request being confirmed by the system
administrator. He can also view his students’ attendance or even other
students on the system, but he cannot change the attendance sheet
values as it is an administrator authority.

3- The Control module: Is made to be used by the professors or
employees that have the authority of submitting the exam scores in the
database. This module also enables the control users to edit, delete or
view all the results for the students, considering that the system has the
highest authority administrator that should confirm the requested
changes in the results and place it on the database.

4- The Graduate module: Is made to be used by the students
being graduated from the university. Those users can use the system in

15

order to grab some useful important information to them. This grabbed
information for example can be viewing or printing student transcript,
viewing accumulated GPA, and viewing currently stored courses on the
database in case of that graduate needs to make post-graduate studies.

5- The Admin module: It is the user that has the highest privilege
on the system. The admin user is the user that takes and confirms
important decisions, such as confirming registration requests made by
the users registering the system… etc.

1.5- Products Used in the Project:

1.5.1 Oracle data server:

Oracle database is an object-relational database management
system (ORDBMS) produced and marketed by Oracle Corporation.
Oracle database is a collection of data treated as a unit. The purpose of
a database is to store and retrieve related information. A database
server is the key for solving the problems of information management. In
general, a server reliably manages a large amount of data in a multi-user
environment so that many users can concurrently access the same data.
All this is accomplished while delivering high performance. A database
server also prevents unauthorized access and provides efficient
solutions for failure recovery. Oracle Database is the first database
designed for enterprise grid computing, the most flexible and cost
effective way to manage information and applications. Enterprise grid
computing creates large pools of industry-standard, modular storage and
servers. With this architecture, each new system can be rapidly
provisioned from the pool of components. There is no need for peak
workloads, because capacity can be easily added or reallocated from the
resource pools as needed. The database has logical structures and
physical structures. Because the physical and logical structures are
separate, the physical storage of data can be managed without affecting
the access to logical storage structures.

1.5.2 Java Database Connectivity:

Commonly referred to as JDBC, is an application programming
interfaces language that defines how a client may access a database. It
provides methods for querying and updating data in a database. JDBC is
oriented towards relational databases. A JDBC-to-ODBC bridge enables
connections to any ODBC-accessible data source in the JVM host.
Environment.JDBC helps you to write java applications that manage
these three programming activities:

16

• Connect to a data source, like a database.
• Send queries and update statements to the database.
• Retrieve and process the results received from the database in answer to

your query.

1. History and implementation: Sun Microsystems released JDBC
as part of JDK 1.1 on February 19, 1997. It has since formed part of the
Java Standard Edition.The JDBC classes are contained in the Java
package java.sql and javax.sql starting with version 3.0, JDBC has been
developed under the Java Community Process.

2. Functionality: JDBC allows multiple implementations to exist
and be used by the same application. The API provides a mechanism for
dynamically loading the correct Java packages and registering them with
the JDBC Driver Manager. The Driver Manager is used as a connection
factory for creating JDBC connections. JDBC connections support
creating and executing statements. These may be update statements
such as SQL's CREATE, INSERT, UPDATE and DELETE, or they may
be query statements such as SELECT. Additionally, stored procedures
may be invoked through a JDBC connection. JDBC represents
statements using one of the following classes:

• Statement – the statement is sent to the database server each and every
time.

• PreparedStatement – the statement is cached and then the execution path
is pre-determined on the database server allowing it to be executed
multiple times in an efficient manner.

• CallableStatement – used for executing stored procedures on the
database. Update statements such as INSERT, UPDATE and DELETE
return an update count that indicates how many rows were affected in the
database. These statements do not return any other information.Query
statements return a JDBC row result set. The row result set is used to
walk over the result set. Individual columns in a row are retrieved either by
name or by column number. There may be any number of rows in the
result set. The row result set has metadata that describes the names of
the columns and their types. There is an extension to the basic JDBC API
in the javax.sql. JDBC connections are often managed via a connection
pool rather than obtained directly from the driver.

1.5.3 NetBeans:

Refers to both a platform framework for Java desktop
applications, and an integrated development environment (IDE) for
developing with Java, JavaScript, PHP, Python, Ruby, Groovy, C, C++,
Scala, Clojure, and others. The NetBeans IDE is written in Java and can

17

http://download.oracle.com/javase/6/docs/api/java/sql/CallableStatement.html
http://download.oracle.com/javase/6/docs/api/java/sql/PreparedStatement.html
http://download.oracle.com/javase/1.4.2/docs/api/java/sql/Statement.html

run anywhere a JVM is installed, including Windows, Mac OS, Linux,
and Solaris. A JDK is required for Java development functionality, but is
not required for development in other programming languages. The
NetBeans platform allows applications to be developed from a set of
modular software components called modules. Applications based on
the NetBeans platform (including the NetBeans IDE) can be extended by
third party developers. The NetBeans Platform is a reusable framework
for simplifying the development of Java Swing desktop applications. The
NetBeans IDE bundle for Java SE contains what is needed to start
developing. NetBeans plug-in and NetBeans Platform based
applications; no additional SDK is required. Applications can install
modules dynamically. Any application can include the Update Center
module to allow users of the application to download digitally-signed
upgrades and new features directly into the running application.
Reinstalling an upgrade or a new release does not force users to
download the entire application again.

18

Chapter 2
Amro Salem Contribution

2.1- Designing Implementation:

The implementation was designed to make use of the features
and the technologies of the available products. Beside using the features
and the technologies of the available products, common programming
techniques was utilized to encapsulate the data layer and make use of
the upper layers in such a way that those layers is not directly
manipulating the database. This was done by utilizing the session
coordinate in the system. The session package containing the system
offers a lot of features that would make the system more usable.
Usability of the system was the main factor considered when designing
the data manipulation scheme. The session package contains two
classes. Those classes are DBManAPI and Session. The Session class
carries the HashMap that holds each SQL query as a key and the result
of this SQL query as a ResultSet value. Also it offers basic manipulation
services such as retrieving data and updating data in the HashMap. In
other words the way data is retrieved is hidden from the upper layers
using the session class, so whenever a query is made, the user do not
know whether it is retrieved directly from the database or from the history
contained in the HashMap.:

package session;

import com.sun.rowset.CachedRowSetImpl;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.HashMap;
import java.util.Map.Entry;
import javax.sql.RowSet;
import javax.swing.JOptionPane;

public class Session implements Runnable
{

 public HashMap< String, RowSet > hash;
 Connection connect;

 public Session(Connection connect)
 {
 this.connect = connect;
 hash = new HashMap<String, RowSet>();

19

 }

 public RowSet addEntry(String sql, RowSet

result)
 {
 return hash.put(sql, result);
 }

 public RowSet getOperation(String element)
 {
 return hash.get(element);
 }

 public void updateOccured()
 {
 try
 {
 for(Entry< String, RowSet > ent :

hash.entrySet())
 {
 Statement statement =

connect.createStatement(ResultSet.TYPE_SCROLL_SENSIT
IVE, ResultSet.CONCUR_READ_ONLY);

 CachedRowSetImpl result = new
CachedRowSetImpl();

 result.populate(statement.execut
eQuery(ent.getKey()));

 ent.setValue(result);
 hash.put(ent.getKey(),

ent.getValue());
 }
 }

 catch(SQLException ex)
 {
 JOptionPane.showMessageDialog(null

, "Error Ocurred While Updating Session Data!", "Data
Base Error", JOptionPane.ERROR_MESSAGE);

 }
 }

 public boolean keyExists(String sql)
 {
 return hash.containsKey(sql);
 }

 public void run()

20

 {
 updateOccured();
 }
}

This class offers a user multiple functions, the most important
function is:

1- The user can access the data retrieved before, during the
session even if the connection is terminated (offline).

2- It decreases the time required to fetch data from the Oracle
database server, because no every time data is required it is fetched
from database. In other words, if this data is being fetched for the first
time it will be brought from the database then placed in HashMap then
viewed to the user. On the other hand, if this data was fetched before, so
the result of the query is fetched from the HashMap saving the time of
querying the database over the cloud.

The DBManAPI class offers common manipulation tasks built on
the session class. Those operations are executing a select statement
against the database and executing a DML/DDL statement against the
database. :

package session;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import javax.swing.JOptionPane;
import com.sun.rowset.CachedRowSetImpl;

public class DBManAPI
{
 Connection connect;
 Session session;

 public DBManAPI(Connection con)
 {
 session = new Session(con);
 connect= con;
 }

 public ResultSet executeSelect(String sql)

21

 {
 try
 {
 if(session.keyExists(sql))
 {
 if(session.getOperation(sql)

!= null)
 {
 return session.getOperation(

sql);
 }
 else
 {
 Statement statement =

connect.createStatement(ResultSet.TYPE_SCROLL_SENSIT
IVE, ResultSet.CONCUR_READ_ONLY);

 CachedRowSetImpl res = new
CachedRowSetImpl();

 res.populate(statement.exec
uteQuery(sql));

 statement.close();
 System.gc();
 return

session.addEntry(sql, res);
 }
 }
 else
 {
 Statement statement =

connect.createStatement(ResultSet.TYPE_SCROLL_SENSIT
IVE, ResultSet.CONCUR_READ_ONLY);

 CachedRowSetImpl res = new
CachedRowSetImpl();

 res.populate(statement.executeQ
uery(sql));

 statement.close();
 System.gc();
 session.addEntry(sql, res);
 return session.addEntry(sql,

res);
 }

 }
 catch(SQLException ex)
 {
 JOptionPane.showMessageDialog(null,

ex, "ERROR", JOptionPane.ERROR_MESSAGE);

22

 ex.printStackTrace();
 return null;
 }

 }

 public int executeDML(String sql) throws

SQLException
 {
 Statement statement = statement =

connect.createStatement(ResultSet.TYPE_SCROLL_SENSIT
IVE, ResultSet.CONCUR_READ_ONLY);

 int result =
statement.executeUpdate(sql);

 statement.close();
 System.gc();
 return result;
 }

 public void fireUpdate()
 {
 Thread th = new Thread(session);
 th.start();
 }
 public Connection getConnection(){
 return connect;
 }

}

One important feature of this class is that it makes use of the
threading API of the Java to update the result contained in the HashMap
in the background without pausing the execution of the program. This
could be noticed in fireUpdate() method which creates a new instance of
Thread class to achieve virtually parallel processing.

23

2.2- Identifying the Users of the System and Creating the
Corresponding Roles:

A system of a university normally has more than one type of
users. When the target users of the system were determined a separate
kind of logical category of privileges was created. Normally in Oracle
database this logical category of privileges is grouped into schema object
called ‘Role’. The roles that were created for the database system are
Student, Professor, Administrator, Control and Graduate. Those roles
were mapped also in the GUI and the Handling layer of the system. As an
example of creating a role is:

CREATE ROLE student;
GRANT CREATE SESSION TO student;
GRANT SELECT ON courses TO student;
GRANT SELECT ON exams TO student;
GRANT UPDATE student_courses(status) TO
student;
.
.
.
.

The previous code is a snippet of the code of creating a role.
Each user that is granted access to the system is assigned a new
account with a unique username and password. Whenever a new
account is created Oracle database assigns a new schema, this schema
can hold any kind of objects, whether a tables, views, sequence, or index.

The tables composing the system are all contained in one
schema this schema is called developer. The developer schema has its
own username and password which is ‘DEV’ and ‘DEV’ respectively.
Access to this schema is planned to be granted only to the database
administrator of the system.

After logically grouping the data that will be saved in the
database, the ER model was created. The ER model represents:

1- How data would be stored.
2- What data would be stored.
3- What are the logical relationships between the tables.
4- What views would be created on these tables.
5- What users will be accessing which information.
6- Which columns will be the primary keys of the tables.

24

25

2.3- Some Functions of the Student Module:

The Student module contains the GUI and the Handling code that
models the typical operations that would be initiated by a student using
the system. These operations reflect the privileges granted for the
student and hide the operations that are not allowed for a student. For
example the user that logged in as a student cannot remove another
student from the database. Some of those functions are mentioned in
the following sub-sections.

2.3.1- Reviewing the attendance in a given course:

26

2.3.2- Keeping track of the courses of the user student:

27

28

2.4- Important Features of Student Module:

The features of the student module appear in how services reflect
the operations that would be requested by a typical student. The
coordinates of these features are:

1- SQL code that could be translated by the database.
2- Java code that offers a mapping between the Java variables

and the values of the columns. For example, the student needs to
search the courses of his department according to a certain criteria, in
order to enroll in one of these courses. These criteria can be searching
the courses by number of credit hours, course name, a specific
prerequisite course, a specific number of prerequisites to that course or
searching by the status of the course (‘Currently Enrolled’, ‘Passed’,
‘Never Enrolled’, ‘Tried Before’). :

package Services;

import java.sql.ResultSet;
import session.DBManAPI;

public class StudentSearchCourses
{
 DBManAPI manipulate;
 String courseID;
 String courseName;
 String profID;
 int numOfCredits;
 int numOfPre;
 String status1;
 String status2;
 String query;

 public StudentSearchCourses(DBManAPI

manipulate)
 {
 this.manipulate = manipulate;
 }

 public StudentSearchCourses(DBManAPI

manipulate, String courseID, String courseName, String
profID, int numOfCredits, int numOfPre, String
status1, String status2)

 {
 this.manipulate = manipulate;
 this.courseID = courseID;
 this.courseName = courseName;

29

 this.profID = profID;
 this.numOfCredits = numOfCredits;
 this.numOfPre = numOfPre;
 this.status1 = status1;
 this.status2 = status2;
 query = String.format("select

c.course_id \"Course ID\", c.course_name \"Course
Name\", "

 +
"c.max_score \"Full Mark\", to_char(c.pass_pct) || '
%%' \"Pass Percentage\", "

 +
"c.credit_hours \"Number of Hours\",
nvl2(c.prequisit1_id, p1.course_name, '') \"Prequisit
1\", "

 +
"nvl2(c.prequisit2_id, p2.course_name,
'') \"Prequisit 2\", "

 +
"nvl2(c.prequisit3_id, p3.course_name,
'') \"Prequisit 3\", "

 +
"nvl2(c.prequisit4_id, p4.course_name,
'') \"Prequisit 4\", "

 + "sc.status \"Your
Status\", sc.score \"Your Score\", "

 +
"sc.num_of_enteries \"Times You Entered The Course\" "

 + "from
dev.courses c left outer join courses p1 "

 + "on
(c.PREQUISIT1_ID = p1.COURSE_ID) "

 + "left outer join
courses p2 "

 + "on
(c.PREQUISIT2_ID = p2.COURSE_ID) "

 + "left outer join
courses p3 "

 + "on
(c.PREQUISIT3_ID = p3.COURSE_ID) "

 + "left outer join
courses p4 "

 + "on
(c.PREQUISIT4_ID = p4.COURSE_ID) "

 + "left outer join
(select course_id, "

30

 + "status, score,
num_of_enteries "

 + "from
student_courses "

 + "where
upper(student_id)= '%S') sc "

 + "on(c.COURSE_ID
= sc.COURSE_ID) "

 + " ",
GeneralServices.getCurrentStudentID(manipulate));

 setCourseID();
 setCourseName();
 setCredits();
 setNumPre();
 setStatus();
 }

 public final void setCourseID()
 {
 if(courseID == null)
 return;
 else
 query += String.format(" OR

upper(c.course_id) like '%%%S%%'", courseID);
 }

 public final void setCourseName()
 {
 if(courseName == null)
 return;
 else
 query += String.format(" OR

upper(c.course_name) like '%%%S%%'", courseName);
 }

 public final void setCredits()
 {
 if(numOfCredits == -1)
 return;
 else
 query += String.format(" OR

c.credit_hours = %d", numOfCredits);
 }

 public final void setNumPre()
 {
 if(numOfPre == -1)

31

 return;
 else
 query += String.format(" OR (0 + "
 + "nvl2(c.prequisit1_id, 1,

0)"
 + " + nvl2(c.prequisit2_id,

1, 0)"
 + " + nvl2(c.prequisit3_id,

1, 0)"
 + " + nvl2(c.prequisit4_id,

1, 0)) = %d", numOfPre);
 }

 public final void setStatus()
 {
 if(status1 == null && status2 == null)
 return;
 if(status1 == null && status2 != null)
 query += String.format("or

upper(sc.status) = '%S'", status2);
 if(status2 == null && status1 != null)
 query += String.format("or

upper(sc.status) = '%S'", status1);
 if(status2 == null && status1 != null)
 query += String.format("or

upper(sc.status) in ('%S', '%S')", status1,
status2);

 }

 public ResultSet getResult()
 {
 return manipulate.executeSelect(query);
 }
}

32

2.5- Some Functions of the Admin Module:

The admin module contains the GUI and handling code that
models the typical operations that would be initiated by an admin using
the system. These operations reflect the privileges granted for the
admin. For example the user that logged in as an admin can remove a
user from the database. Some of those functions are mentioned in the
following sub-sections.

2.5.1- Confirming Registration Requests:

33

34

2.5.2- Viewing/Handling Exam Enrollment Requests:

35

2.5.3- Viewing Already Handled Request:

36

Chapter 3
Ramy Saad Contribution

3.1- Some Functions of the Professor Module:

The Professor module contains the GUI and handling code that
models the typical operations that would be initiated by a professor using
the system. These operations reflect the privileges granted for the
professor and hide the operations that are not allowed for a professor.
For example the user that logged in as a professor cannot remove a
student from the database or submit scores for a course that he is not
teaching. Some of those functions are mentioned in the following sub-
sections.

3.1.1- Applying for Teaching a Course:

37

3.1.2- Reviewing the attendance of students:

38

3.1.3- Viewing Lectures Schedule:

39

3.1.3- Generating Some Statistics for a Course:

40

3.1.4- Viewing Exam Schedule:

41

3.2- Important Features of the Professor Module Java Code:

The features of the Professor module appear in how services
reflect the operations that would be requested by a typical professor.
The coordinates of these features are:

1- SQL code that could be translated by the database.
2- Java code that offers a mapping between the Java variables

and the values of the columns. For example when a new professor
requests to be added to the system, this operation is carried out by a
services class called NewEmployee. :

package Services;

import java.sql.ResultSet;
import java.sql.SQLException;
import javax.swing.JOptionPane;
import session.DBManAPI;

public class NewEmployee {

42

 String username;
 String password;
 DBManAPI manipulate;
 String employeeID;

 public NewEmployee(DBManAPI manipulate,

String username, String password)
 {
 this.username = username;
 this.password = password;
 this.manipulate = manipulate;
 }

 public NewEmployee(DBManAPI manipulate,
String username, String password, String employeeID)

 {
 this(manipulate, username, password);
 this.employeeID = employeeID;

 }

 public void createUser() throws SQLException
 {
 try
 {
 manipulate.executeDML(String.format(

"create user %s identified by %s", username,
password));

 manipulate.executeDML(String.format(
"grant professor to %s", username));

 }
 catch(SQLException ex)
 {
 throw ex;
 }
 }

 public void removeUser() throws SQLException
 {
 try
 {
 manipulate.executeDML(String.format

("delete from dev.registration_requests where
upper(username) = upper('%s')", username));

 }

43

 catch(SQLException ex)
 {
 throw ex;
 }

 }

 public void addHistory() throws SQLException
 {
 try
 {
 manipulate.executeDML(String.format

("insert into dev.request_archive(requesting_user,
request_time, handeled_by, handling_time)(select
'%s', request_time, user, sysdate from
dev.registration_requests where
upper(username)=upper('%s'))", username, username));

 }
 catch(SQLException ex)
 {
 throw ex;
 }
 }
 public void addEmployeeToTable() throws

SQLException
 {
 try
 {

 manipulate.executeDML(String.format

("insert into dev.employees (first_name,
middle_name, "

 + "last_name, nationality,
email, mobile_no, "

 + "telephone_no, username,
street, city"

 + ", state, country,
date_of_birth, place_of_birth, "

 + " employee_id, image)
(select first_name, middle_name, "

 + "last_name, nationality,
email, mobile_no, "

 + "telephone_no, username,
addr_street, addr_city"

 + ", addr_state,
addr_country, birth_date, "

44

 + "birth_place_country,
to_number('%s'), to_number('%s'), image from
dev.registration_requests "

 + "where upper(username) =
'%S')", this.employeeID, username));

 JOptionPane.showMessageDialog(null,
"The Employee Was Successfully Added to The System!",
"CONFIRMATION", JOptionPane.INFORMATION_MESSAGE);

 }

 catch(SQLException ex)
 {
 throw ex;
 }
 }

 void setEmployeeID(String id)
 {
 employeeID = id;
 }

 public String getEmail()
 {
 try
 {
 ResultSet email =

manipulate.executeSelect(String.format("select email
from dev.employees where username = '%s'",
username));

 email.first();
 return email.getString(1);
 }
 catch(SQLException ex)
 {
 return

JOptionPane.showInputDialog("Please Enter the Email
of This Employee:");

 }
 }
 public String getUsername()
 {
 return username;
 }

 public String getPassword()
 {

45

 return password;
 }
}

3.2.1- Feature createUser():

This feature creates a new login credentials for the professor using the
username and the password already required by the user before. This is
done by using the create user Oracle SQL command. The mapping
between a Java string variable and a SQL literal is done by a
String.format() static function.

3.2.2- Feature addEmployeeToTable():

This feature creates a new row for the professor in the employees table
using the insert command. The insert command used in this feature is
not a normal insert command, it uses a subquery to copy the user data
from the registration table directly to the employees table. Finally after
the professor is perfectly added to the employees in the system, a
confirmation message will appear to the user using the following code
snippet:
JOptionPane.showMessageDialog(null, "The Employee Was
Successfully Added to The System!", "CONFIRMATION",
JOptionPane.INFORMATION_MESSAGE);

3.2.3- Another example of the features is InitializeProfInfo class in
package Services:
This class is used to retrieve all the basic information about professor
from the database whenever the professor login the system, and keeps
this information in the session.

package Services;

import java.sql.ResultSet;
import session.DBManAPI;

public class InitializeProfInfo {

 String firstName = "";
 String middleName = "";
 String lastName = "";
 DBManAPI manipulate;

 public InitializeProfInfo(DBManAPI manipulate,
String firstName, String middleName, String lastName)
{
 this.firstName = firstName;

46

 this.middleName = middleName;
 this.lastName = lastName;
 this.manipulate = manipulate;
 }

 public InitializeProfInfo(DBManAPI manipulate) {
 this.manipulate = manipulate;
 }

 public ResultSet getAllInfo() {
 if (firstName.equals("") ||
middleName.equals("") || lastName.equals("")) {
 return manipulate.executeSelect("select *
from dev.employees where username = user");
 } else {
 return
manipulate.executeSelect(String.format("select * from
dev.employees where first_name = '%s' and middle_name
= '%s' and last_name = '%s'", firstName, middleName,
lastName));
 }
 }

 public ResultSet getDay() {
 if (firstName.equals("") ||
middleName.equals("") || lastName.equals("")) {
 return manipulate.executeSelect("select
to_number(to_char(date_of_birth, 'DD')) from (select
* from dev.employees where username = user)");
 } else {
 return
manipulate.executeSelect(String.format("select
to_number(to_char(date_of_birth, 'DD')) from (%s)",
String.format("select * from dev.employees where
first_name = '%s' and middle_name = '%s' and
last_name = '%s'", firstName, middleName,
lastName)));
 }
 }

 public ResultSet getMonth() {
 if (firstName.equals("") ||
middleName.equals("") || lastName.equals("")) {
 return manipulate.executeSelect("select
to_number(to_char(date_of_birth, 'MM')) from (select
* from dev.employees where username = user)");
 } else {

47

 return
manipulate.executeSelect(String.format("select
to_number(to_char(date_of_birth, 'MM')) from (%s)",
String.format("select * from dev.employees where
first_name = '%s' and middle_name = '%s' and
last_name = '%s'", firstName, middleName,
lastName)));
 }

 }

 public ResultSet getYear() {
 if (firstName.equals("") ||
middleName.equals("") || lastName.equals("")) {
 return manipulate.executeSelect("select
to_number(to_char(date_of_birth, 'YYYY')) from
(select * from dev.employees where username =
user)");
 } else {
 return
manipulate.executeSelect(String.format("select
to_number(to_char(date_of_birth, 'YYYY')) from
(%s)", String.format("select * from dev.employees
where first_name = '%s' and middle_name = '%s' and
last_name = '%s'", firstName, middleName,
lastName)));
 }
 }
}

48

3.3- Important Features of the Admin Module:

Admin module’s features are the Java code that offers services
that maps the different processes requested by the admin into database
operations. For example, in order for the student to be enrolled in a
course, an administrator must confirm this request. This operation is
handled by a services class called RequestsInsertion in Services
package. :

package Services;

import java.sql.ResultSet;
import java.sql.SQLException;
import session.DBManAPI;

public class CourseConfirmation
{
 DBManAPI manipulate;
 String username;
 String courseID;
 String courseName;

 public CourseConfirmation(DBManAPI

manipulate, String username, String courseID)
 {
 this.manipulate = manipulate;
 this.username = username;
 this.courseID = courseID;
 this.courseName = courseName();

 }

 public void changingStatus()
 {
 try
 {
 manipulate.executeDML(String.format

("update student_courses set status = 'currently"
 + "

enrolled', num_of_enteries = num_of_enteries + 1
where student_id= (select "

 + " s.student_id
from dev.students s where upper(s.username) = '%S')
and "

 +
"upper(course_id) = '%S' ", username, courseID));

 }

49

 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }

 public void addingHistory()
 {
 try
 {
 manipulate.executeDML(String.format

("insert into dev.request_archive(requesting_user,
request_time, handeled_by, handling_time)(select
'%s', request_date, user, sysdate from
dev.course_requests where
upper(username)=upper('%s'))", username, username));

 manipulate.executeDML(String.format
("delete from dev.course_requests where
upper(username) = upper('%s')", username));

 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }

 public String courseName()
 {
 ResultSet courseName =

manipulate.executeSelect(String.format("select
course_name from dev.courses"

 + " where upper(course_id) =
%S", courseID));

 try
 {
 courseName.first();
 return

courseName.getString(1);
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 return "";
 }
 }

50

 public String getCourseName()
 {
 return courseName;
 }

 public String getCourseID()
 {
 return courseID;
 }

 public String getStudentEmail()
 {
 ResultSet email =

manipulate.executeSelect(String.format("select
email from students "

 + "where upper(username) =
%S", username));

 try
 {
 email.first();
 return email.getString(1);
 }
 catch(SQLException ex)
 {
 ex.printStackTrace();
 return "";
 }
 }
}

When the admin confirms course enrollment request, this class is
instantiated. changingStatus() changes the status of the student
regarding the specific course from ‘Never Enrolled’ to ‘Currently Enrolled’
using an update query, it also increments the number of trials by one.
This feature recognizes the admin confirming the request using Oracle
proprietary ‘USER’ function which returns the username of the user
currently connected user to the database.

51

3.4- The Java Mail 1.4.4 API:

JavaMail 1.4.4 release contains several bug fixes and
enhancements, including:

- Ability to cache POP3 messages on disk.
- In-memory POP3 message cache now uses soft references.
- NTLM authentication support is now integrated. SASL

authentication support for SMTP.
- New demo classes showing how to handle old non-MIME

Outlook messages. Note: Unless you're using Java SE 6, you will also
need the JavaBeans Activation Framework (JAF) extension that
provides the javax.activation package. We suggest you use version 1.1.1
of JAF, the latest release. JAF is included with Java SE 6.

The JavaMail API supports JDK 1.4 or higher.

Protocols supported:

This release supports the following Internet standard mail
protocols:

 IMAP - a message Store protocol, for reading messages from a
server.

 POP3 - a message Store protocol, for reading messages from
a server.

 SMTP - a message Transport protocol, for sending messages
to a server.

The following table lists the names of the supported protocols (as
used in the JavaMail API) and their capabilities:

52

See our web page at
http://www.oracle.com/technetwork/java/javamail/
for the latest information on third party protocol providers.

Installation

Windows

 1. Unzip the javamail1_4_4.zip archive. (You may have already
done this.)

 2. Set your CLASSPATH to include the "mail.jar" file obtained
from the download, as well as the current directory. Assuming you
unzipped javamail1_4_4.zip in c:\download the following would work:

set CLASSPATH=%CLASSPATH%;c:\download\javamail-
1.4.4\mail.jar;.

Also, if you're using JDK 1.5 or earlier, include the "activation.jar"
file that you obtained from downloading the JavaBeans Activation
Framework, in your CLASSPATH.

Set CLASSPATH=%CLASSPATH
%;c:\download\activation\activation.jar

 3. Go to the demo directory.

 4. Compile any demo using your Java compiler. For example:
javac msgshow.java.

 5. Run the demo. The '-' option lists the required and optional
command-line options to successfully run any demo. For example: java
msgshow - lists the available options. And java msgshow -T imap
-H <mailserver> -U <username> -P <passwd> -f INBOX 5
uses the IMAP protocol to display message number 5 from your INBOX.

(Additional instructions on how to run the simple mail reader
demo and servlet demo are provided in demo/client/README.txt and
demo/servlet/README.txt, respectively.).

53

http://www.oracle.com/technetwork/java/javamail/

Chapter4
Hany Abd-ElSamad Contribution

4.1- Creating Tables:

54

The ER model was studied perfectly and the plan of the ER model
was created. Oracle SQL syntax was studied also some features of
Oracle 10G was comprehended. Implementing the ER model requires to
implicitly embed a diverse categories of statements in the tables creation
scripts. In order to achieve a truly reflecting implementation of the ER
model, I had to keep track of the variation of several variables including
types of the columns, precision and scale of the columns, and finally the
types of constraints that perfectly fit the visualization of the ER model.
About 16 creation scripts were required to completely satisfy the
specification comprehended from the ER model. Through this 16 scripts
I changed several parameters to fit the implementation of each table
independently from the others. One of these scripts is as following:

 CREATE TABLE "DEV"."EMPLOYEES"
 ("FIRST_NAME" VARCHAR2(27 BYTE),

"MIDDLE_NAME" VARCHAR2(27 BYTE),
"LAST_NAME" VARCHAR2(27 BYTE),
"MANAGER_ID" VARCHAR2(25 BYTE),
"NATIONALITY" VARCHAR2(20 BYTE),
"EMAIL" VARCHAR2(35 BYTE),
"DATE_OF_BIRTH" DATE,
"PLACE_OF_BIRTH" VARCHAR2(27 BYTE),
"STREET" VARCHAR2(200 BYTE),
"CITY" VARCHAR2(20 BYTE),
"STATE" VARCHAR2(20 BYTE),
"COUNTRY" VARCHAR2(20 BYTE),
"HIRE_DATE" DATE,
"JOB_TITLE" VARCHAR2(20 BYTE),
"COURSE_EXPERTISE1" VARCHAR2(25 BYTE),
"COURSE_EXPERTISE2" VARCHAR2(25 BYTE),
"COURSE_EXPERTISE3" VARCHAR2(25 BYTE),
"COURSE_EXPERTISE4" VARCHAR2(25 BYTE),
"COURSE_EXPERTISE5" VARCHAR2(25 BYTE),
"BACKGROUND" VARCHAR2(100 BYTE),
"EMPLOYEE_ID" VARCHAR2(25 BYTE),
"DEPARTMENT_ID" VARCHAR2(25 BYTE),
"USERNAME" VARCHAR2(25 BYTE),
"TELEPHONE_NO" VARCHAR2(11 BYTE),
"MOBILE_NO" VARCHAR2(11 BYTE),
"EMPLOYEE_TYPE" VARCHAR2(25 BYTE),
"IMAGE" BLOB

) STORAGE(INITIAL 65536 NEXT 1048576
MINEXTENTS 1 MAXEXTENTS 2147483645

 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
BUFFER_POOL DEFAULT)

 TABLESPACE "USERS"

55

 LOB ("IMAGE") STORE AS BASICFILE (
 TABLESPACE "USERS" ENABLE STORAGE IN ROW CHUNK

8192
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS

1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1

BUFFER_POOL DEFAULT)) ENABLE ROW MOVEMENT ;

The previous script creates a table that models a employee
(professor or tutor) user. It contains all the attributes needed to model a
real professor into a tuple in the database. The most important services I
have used in this creation scripts are listed in the following points:

4.1.1- The CREATE TABLE statement:

The create table statement creates a table by specifying the
columns and the data types of these columns and possible default
values for these columns in a comma separated list after the table name.
It also can specify some features about the table that could make the
administrator’s job easier after the comma separated list.

4.1.2- The BLOB data type:

This data type is offered by the Oracle 10G database to hold a
binary file. Oracle 10G offers two data types that could represent binary
files they are:

1- BFILE:
It holds a pointer to a file located locally on the file system of the

operating system running the database. In other words, BFILEs does not
hold a file itself but it holds a pointer to the file located on the operating
system. Manipulating this data type over the cloud requires the use of an
FTP server since in order to transfer the file between the server and the
client the file would be first copied from the local operating system of the
server and sent over the cloud to the client.

2- Binary Large Object (BLOB):
It holds a binary file rather than just a pointer to the file. This data

type can be queried easily over the cloud without using FTP server,
since the file does not need to be copied from any file system firstly.

So the BLOBs are used to hold the images or avatars of the
professors. This helped in manipulating those images into input streams
of the I/O API of the JDK.

56

4.2- Enable Row Movement:

Three flashback techniques are based on the use of undo
segments. The first flashback capability was initially introduced with
release 9i of the database and has been substantially enhanced
subsequently. Flashback Query (the release 9i feature) lets you query
the database as it was at some time in the past, either for one select
statement or by taking your session temporarily back in time so that all
its queries will be against a previous version of the database. This can
be used to see the state of the data before a set of transactions was
committed. What did the tables look like half an hour ago? This can be
invaluable in tracking down the cause of business data corruptions, and
can also be used to correct some mistakes: by comparing the current
and previous versions of a table, you can identify what was done that
was wrong. It is even possible to select all versions of a row over a
period of time, to show a history of what has happened to the row, when
it happened, who did it, and the identifiers of the transactions that made
each change. The third flashback technique based on undo data is
Flashback Table. Having determined that inappropriate work has been
committed against one table, you can instruct Oracle to reverse all
changes made to that table since a particular point in time, while leaving
all other tables current. 1 The “Enable Row Movement” statements
contained in the creation of the table enables us to make use of the
flashback properties offered by Oracle 11G database.

1. Oracle Database Administration 11G Guide.

57

Chapter5
Ahmed Awad Contribution

Control Role

-The Functions:

a) The GUI Description of the control Functions:

1-The main Frame:

 This is the main window that is opened after the authentication is done and
after that the password of the user is known to be verified to be belonged to the
control department.
This window is composed of three buttons on the top and a button in the down of
the window three buttons that implement the three functions that is needed from
the control department this buttons are:
*Add Result button
*Edit Result button
*Print Result button

a) Add Result button:
This button is used to the result of a student to the database of the system.
b) Edit Result button:
This button is used to change the result of student in the system database.
c) Print Result button:
This button is used to print the script of a student or of a subject.

58

D) Back button:
The back button is used to return to the authentication window.

If the add button is pushed the following frame is opened which is:

2-Add Result Frame:

 The add Result Frame contain four combo boxes which are:

A) Student Name Combo Box:
This combo box is used to clarify the names of the students who are registered in
a certain course from this combo box we choose the name of the student who his
result will be edited this box is activated automatically after the choice of both the
course name combo box and the exam date and type combo box.

B) Course Name Combo Box:
This combo box is used to select the name of the subject that will edit the result
of its exam for the student name that exists in the combo box.

C) Exam Date and Type:
This button is activated when selecting the course name automatically to make
the user select from the dates of the exams of this course and the type of the
exam.

There are 5 Text Fields that are existed in the Add Result Frame which are:

A) Exam Score Field:
This field is used to take the exam score entered for that student in that subject.

B) Mid Term Score Field:
This field is used to take the mid term score of the specific student in that exam.

59

C) Attendance Field:
This field is used to take the attendance percentage of the student in that course.

D) Activity Score Field:
This Field is used to take the activity score of the student in this subject.

E) Total Score Field:
This Field is used to print the summation of the total of this scores.
There are two buttons in the Add Result Frame which are:
A) OK button:
 This button when it is pushed it dumps all the data given this Fields into the
database and prints the total score in the total score field.

 B) Back button:
This button is used to back to the interface frame.

When pushing the Edit button in the interface Frame the following Frame is
opened :

This Window is composed of the following GUI components which are:

UِA) Four Combo boxes which are:
* Student Name Combo Box: Is the combo box that contains the names of the
students that are enrolled in a given Course name that is specified from the
Course Name Combo Box and in a specific exam which has a specific date and
a specific type that is chosen from the exam Date and exam type combo box .

 * Course Name Combo Box:

This is the combo box that contains the course names that are existed in the
system.

60

* Exam Date and Type Combo Boxes:

This Combo Box is used to contain all the exam dates of a given course and the
type of the exams.

There are three buttons in the Edit Student Frame which are:

* OK Button:
By pushing this button all the data from the new fields are dumped in the
database.

* Back Button:
This button is used to back to the interface frame.

* Generate Button:

This button is used to retrieve the old data related to a given student that are
existed in the database.

There 10 Fields in this frame which are:

1-Old Exam Score: this field contains the retrieved old exam score of a given
student data that comes from the database.

2- Old midterm Score Field: this field contains the old midterm score of a given
student that is retrieved from a database.
3- Old Activity Score Field: this field contains the old activity score of a given
student.
4-Old Attendance Field: this field contains the old attendance of a given student.
5-Old total score Field: this field contains the Old total final score of a given
student.
6-New Exam Score Field: this field contains the new exam score of a given
student.
7-New midterm Score Field: this field contains the new mid term score of a given
student that is retrieved from the database.
8-New Activity Score Field: this field contains the new activity score of a given
student.
9-New Attendance Field: this field contains the new attendance of a given
student.
10-New Total score Field: this field contains the new summation of the new
scores of a given student.

When pushing the print button from the interface window the given frame is
opened:

61

This is the Student Vs Subject Frame which consists of the following:

Three buttons which are:

a) Student Script button:

This button is used for printing a student results in the subjects that is opened in
the currently semester (or term as will be described shortly).

b) Subject Script button:

This button is used to print all the results of students in a given subject that is
opened in the currently semester.

c) Back button:

This button is used to return to the interface window.

When pushing on the Student Script button the following window is opened:

62

This is the Print frame.

This frame consists of 4 buttons which are:

a) Full Term script:

This button lead to the printing of the results of a specific student in the subjects
he takes in a full term (two semesters).

b) Half Term Script:

This button print the results of a specific student in the subjects he took in one
semester (Half Term) .

c) Total Script:
This button prints the results of a given student in all the subjects he took.

D) Back button: this button is used to return to the Student Vs Subject frame.

If you press on the Half Semester button for example:

63

The Half Semester Frame consists of the following components:

Five Fields which are:

a) Name Field: this field takes the name of the student of this script.
c) Hours Passed: this Field contains the total hours of the subjects that a given
student is passed.
D) Level: this field contains the level of a given student.
E) Semester Hours: Contain the number of hours of the subjects that student
takes in the currently semester.
F) Total GPA: this Field contains the total GPA of a given student.

The frame contains the table which shows the results of subjects taken by
student in one semester have the following headers:
Subject: this header contains the subjects taken by this student.
CRH: this header contains the credit hours of every subject in the table.
ENT: this header contains the number of entrance the specific subject of a given
student.
Deg: this header contains the total score of the student in each subject.
OF: this field contains the maximum score of each subject
Grade: contains the Grade of the student in each subject
Units: contain the units that are equivalent to each grade

There are two buttons which are:

OK: this button is used to retrieve the data from the data base of a given student
Known from its id to be visualized in the table.
Back: this button is used to return to the Print Frame.

64

There is one combo box that is used to show the student ids of a given name
(names may be repeated)
If you Press the Full Semester Script button the same frame will be appeared
except the following little changes:

The Full Semester Frame consists of the following components:

Five Fields and a Combo Box which are:

a) Name Field: this field takes the name of the student of this script.

b) Student Id Combo Box: this combo box will contain the id of the students that
has the name written in the name field.

c) Hours Passed: this Field contains the total hours of the subjects that a given
student is passed.

D) Level: this field contains the level of a given student.

E) Term Hours: Contain the number of hours of the subjects that student takes in
the currently Term.

F) Total GPA: this Field contains the total GPA of a given student.

 The frame contains the table which shows the results of subjects taken by
student in one Term have the following headers:

65

Subject: this header contains the subjects taken by this student.

CRH: this header contains the credit hours of every subject in the table.

ENT: this header contains the number of entrance the specific subject of a given
student.

Deg: this header contains the total score of the student in each subject.

OF: this field contains the maximum score of each subject.

Grade: contains the Grade of the student in each subject.

Units: contain the units that are equivalent to each grade.

There are two buttons which are:

OK: this button is used to retrieve the data from the data base of a given student
Known from its id to be visualized in the table.
Back: this button is used to return to the Print Frame.

If you Press the Total Script button the same frame will be appeared except the
following little changes:

The Total script Frame consists of the following components:

Five Fields and Combo Box which are:

66

a) Name Field: this field takes the name of the student of this script.

b) Student Id Combo Box:
This combo box will contain the id of the students that has the name written in
the name field
c) Hours Passed: this Field contains the total hours of the subjects that a given
student is passed.
D) Level: this field contains the level of a given student.
E) Total GPA: this Field contains the total GPA of a given student.
 The frame contains the table which shows the results of subjects taken Passed
by a given student and has the following headers:
Subject: this header contains the subjects taken by this student.
CRH: this header contains the credit hours of every subject in the table.
ENT: this header contains the number of entrance the specific subject of a given
student.
Deg: this header contains the total score of the student in each subject.
OF: this field contains the maximum score of each subject.
Grade: contains the Grade of the student in each subject.
Units: contain the units that are equivalent to each grade.

There are two buttons which are:

OK: this button is used to retrieve the data from the data base of a given student
Known from its id to be visualized in the table.
Back: this button is used to return to the Print Frame.

If you press on the Subject Script Button on the Student Vs Subject Frame

67

The following frame is opened:

This is the subject frame and contains the following components:

One Combo Box which is:

Course Name Combo Box: which contain the name of all courses in the system.
Exam Date Combo Box: which contain the Dates of all exams specific to a given
course name in the system.

Course Id Field: which contain the id number of the course being selected.

Two buttons which are:

-OK: this button supply the data from the data base to the table.
- Back: this button is used to return to the Subject Vs Student frame.
- Activation Button: this button is used when we want to activate the choose of
the students that have an exam in a given subject for a specific date.
- Choose Button: this button is used when we want to choose of the students that
have an exam in a given subject for a specific date.
- Course Id Field: this field contain the id of the course.

The Table that is used to show all the students that enter the test of this subject
and their results for the following exam date.

Its header is :

Student Name: which contain the name of the students that have exam in this
course(and in a specific date).

68

midterm Score: the score of the mid term score of each student in this course.
Attendance: contain the attendance of each student in the course.
Activity Score: contain the activity score of each student in the course.
Exam Score: contain the exam score of each student in the course.
Total Score: contain the summation of this scores of each student in the course.

-Features:

1)

To prevent the entrance of a fault value or when the person forget the student
name or the course name so we solve this problem by:
Making a combo box for the courses names that contain the name of all courses
in the system.
That load automatically when starting the class.

Its Code is:
db = new DatabaseConnection();
 db.openDatabaseConnection();
 String st = String.format("select course_name from
dev.courses ");
 try {
 ResultSet rs =
db.con.createStatement().executeQuery(st);
 int counter = 0;
 while (rs.next()) {
 counter++;
 }
 rs = db.con.createStatement().executeQuery(st);
 cmbCoursesSelect.removeAllItems();
 for (int i = 0; i < counter; i++) {
 rs.next();
 cmbCoursesSelect.addItem(rs.getString(1));
 }
 } catch (SQLException ex) {
 System.err.println(ex.getMessage() + "in " +
this.getClass().getName());
 ex.printStackTrace();
 }When a course name is selected and push the button

which show all the dates of exams and the type of
the exams of a specific course its code is:

69

String examId2=null;
 db = new DatabaseConnection();
 db.openDatabaseConnection();
 String courseSelected =
cmbCoursesSelect.getSelectedItem().toString();
 cmbDateSelection.removeAllItems();
 cmbExamTypeSelection.removeAllItems();

 try {

 String st = String.format("select course_id "
 + "from dev.courses where
course_name='%s' ", courseSelected);
 ResultSet rs =
db.con.createStatement().executeQuery(st);

 if (rs.next()) {
 //rs.next();
 courseId=rs.getString(1);
 String courseId2 = rs.getString(1);
 String st1 = String.format("select exam_id
from exams "
 + "where course_id='%s'",
courseId2);
 ResultSet rs1 =
db.con.createStatement().executeQuery(st1);
 while(rs1.next()){
 examId2 = rs1.getString(1);

 String st2 = String.format("select
to_char(exam_date,'DD-MM-YY') \"exam_date\",exam_type "
 + "from dev.exams "
 + "where exam_id='%s'", examId2);

 ResultSet rs2 =
db.con.createStatement().executeQuery(st2);
 while (rs2.next()) {
 String exam_date =
rs2.getString("exam_date");
 String exam_type =
rs2.getString("exam_type");
 cmbDateSelection.addItem(exam_date);

70

 cmbExamTypeSelection.addItem(exam_type);

 }
 }
 }
 } catch (SQLException ex) {
 System.err.println(ex.getMessage() + "in " +
this.getClass().getName());
 ex.printStackTrace();
 }

When you select an exam date and push the button the names of the
students that submit in the exam of the course in this date are loaded in a combo
box to enable the user to select among them freely, its code is:

Integer studentId2=0;
String
examType=cmbExamTypeSelection.getSelectedItem().toString();
String
examDate=cmbDateSelection.getSelectedItem().toString();
 String st = String.format("select student_id "
 + "from dev.student_exams "
 + "where exam_id=select exam_id from
dev.exams where exam_type='%s' AND exam_date='%s'
",examType,examDate);
 String examIdSelection=String.format("select
exam_id from dev.exams where exam_type='%s' AND
exam_date='%s'"
 + " AND
course_id='%s'",examType,examDate,courseId);
 cmbStudentName.removeAllItems();
 try {
 ResultSet rs =
db.con.createStatement().executeQuery(st);
 while(rs.next()){
 studentId2 = rs.getInt("student_id");
 String st1 = String.format("select
first_name,middle_name,last_name "
 + "from dev.students "
 + "where student_id='%d'", studentId2);
 ResultSet rs1 =
db.con.createStatement().executeQuery(st1);
 while (rs1.next()) {
 String name = String.format("%s %s %s",
rs1.getString("first_name"),

71

 rs1.getString("middle_name"),
rs1.getString("last_name"));
 cmbStudentName.addItem(name);
 }
 }
 ResultSet
rs2=db.con.createStatement().executeQuery(examIdSelection);
 rs2.next();
 examId=rs2.getString(1);
 }
 catch (SQLException ex) {
 System.err.println(ex.getMessage() + "in " +
this.getClass().getName());
 ex.printStackTrace();
 }

2)
The generate button is used to provide the person with the old scores of given
student before adding the new scores.
Double oldTotalScore = 0.0;
 Double oldExamScore = 0.0;
 Double oldMidTermScore = 0.0;
 Double oldAttendanceScore = 0.0;
 Double oldActivityScore = 0.0;

 db = new DatabaseConnection();
 db.openDatabaseConnection();

 try {
 String generation = String.format("select
score,attendance_pct,activity_score "
 + "from dev.student_courses where
student_id='%d' AND course_id='%s'", studentId, courseId);

72

 String midTermGen=String.format("select score
from dev.student_exams where student_exams.student_id='%d'
AND "
 + "exam_id="
 + "select midterm_id from
dev.student_courses where "
 + "student_courses.student_id='%d' AND
student_courses.course_id='%s'",studentId,studentId,courseI
d);
 String ExamGen=String.format("select score from
dev.student_exams where student_exams.student_id='%d' AND "
 + "exam_id="
 + "select final_id from
dev.student_courses where "
 + "student_courses.student_id='%d' AND
student_courses.course_id='%s'",studentId,studentId,courseI
d);
 ResultSet rs =
db.con.createStatement().executeQuery(generation);
 ResultSet rs2 =
db.con.createStatement().executeQuery(midTermGen);
 ResultSet rs3 =
db.con.createStatement().executeQuery(ExamGen);
 if ((rs.next()) && (rs2.next()) &&
(rs3.next())) {

 oldExamScore = rs3.getDouble("score");
 oldMidTermScore = rs2.getDouble("score");
 oldAttendanceScore =
rs.getDouble("attendance_pct");
 oldActivityScore =
rs.getDouble("activity_score");
 oldTotalScore = oldExamScore +
oldMidTermScore + oldAttendanceScore + oldActivityScore;
 oldTotalScoreField.setText(oldTotalScore.to
String());
 oldExamScoreField.setText(oldExamScore.toSt
ring());
 oldMidTermField.setText(oldMidTermScore.toS
tring());
 oldAttendanceField.setText(oldAttendanceSco
re.toString());
 oldActivityScoreField.setText(oldActivitySc
ore.toString());
 }
 } catch (SQLException ex) {

73

 System.err.println(ex.getMessage() + "in " +
this.getClass().getName());
 ex.printStackTrace();
 this.dispose();
 }
3) in the print frame:

When you select half term script button or full term script button the same is
opened except the label which is called semester hours must change into term
hours

74

So there was a solution to construct two classes one for the half semester and
one for the term but the more favorite solution is to construct one class and

change the label according to the choice of the button or

The code of the choice is
semisterScript semister=new semisterScript(2);
 semister.setVisible(true);
this.setVisible(false);
or
for full semester:
semisterScript semister=new semisterScript(1);
 semister.setVisible(true);
 this.setVisible(false);
And the constructor decide which frame to show the code of the constructor:

4) in the semester & total script frames the

75

The name of the student is entered in the field and by pushing the ID button it
comparing all the names existed in the system to the entered name to be sure of
the validation of this name if it exist it shows its id in the combo box

If there is a repetition of this name it show all the ids that related to this repeated
name.

If the name isn't exist it shows a warning message telling the user to reenter the
name
Its code is:

cmbStudentId.removeAllItems();
 String studentName1 = nameField.getText();
 int studentId2=0;
 int counter = 0;
 String firstName = null;
 String middleName = null;
 String lastName = null;
 String reservedFirstName = null;
 String reservedMiddleName = null;
 String reservedLastName = null;
 try {
 String studentName = String.format("select
first_name,middle_name,last_name "
 + "from dev.students");
 ResultSet rs =
db.con.createStatement().executeQuery(studentName);
 while (rs.next()) {
 firstName = rs.getString("first_name");
 middleName = rs.getString("middle_name");
 lastName = rs.getString("last_name");
 String fullStudentName = String.format("%s
%s %s", rs.getString("first_name"),
rs.getString("middle_name"), rs.getString("last_name"));
 if
(studentName1.equalsIgnoreCase(fullStudentName)) {
 counter++;
 reservedFirstName = firstName;
 reservedMiddleName = middleName;

76

 reservedLastName = lastName;
 }
 }
 if (counter == 1) {
 String st2 = String.format("select
student_id "
 + "from dev.students "
 + "where first_name='%s'AND
middle_name='%s' AND last_name='%s'",
 reservedFirstName,
reservedMiddleName, reservedLastName);
 nameField.setEditable(false);
 ResultSet rs2 =
db.con.createStatement().executeQuery(st2);
 if (rs2.next()) {
 studentId2 = rs2.getInt("student_id");
 cmbStudentId.addItem(rs2.getInt("studen
t_id"));
 cmbStudentId.setEditable(false);
 }
 }
 if (counter >= 2) {
 JOptionPane.showMessageDialog(null, "the
there are a duplication in the name please choose an ID
from"
 + "the combo box", "Warning"
 + "", JOptionPane.PLAIN_MESSAGE);
 String st2 = String.format("select
student_id "
 + "from dev.students "
 + "where first_name='%s' AND
middle_name='%s' AND last_name='%s'",
 reservedFirstName,
reservedMiddleName, reservedLastName);
 ResultSet rs2 =
db.con.createStatement().executeQuery(st2);
 while (rs2.next()) {
 studentId2 = rs2.getInt("student_id");
 cmbStudentId.addItem(rs2.getInt("studen
t_id"));

 }
 }
 if (counter == 0) {
 JOptionPane.showMessageDialog(null, "Sorry
there isn't any student with this name please retype the
name again", "Warning"

77

 + "", JOptionPane.PLAIN_MESSAGE);
 }

 } catch (SQLException ex) {
 System.err.println(ex.getMessage() + "in " +
this.getClass().getName());
 }

so by this way we be sure that the user doesn't enter an invalid name or student
Id.

5)

In the exam frame :

The course name is loaded in the combo box at the beginning of the program so
as to avoid any probable mistake of entering invalid course name.
The code of loading is:
initComponents();
 db = new DatabaseConnection();
 db.openDatabaseConnection();
 String st = String.format("select course_name from
dev.courses");
 try {
 ResultSet rs =
db.con.createStatement().executeQuery(st);
 int counter = 0;
 while (rs.next()) {
 counter++;
 }

78

 rs = db.con.createStatement().executeQuery(st);
 cmbCourseName.removeAllItems();
 for (int i = 0; i < counter; i++) {
 rs.next();
 cmbCourseName.addItem(rs.getString(1));
 }
 } catch (SQLException ex) {
 System.err.println(ex.getMessage() + "in " +
this.getClass().getName());
 }

After choosing the course and pushing the button the course id
equivalent to the course name will appear in the course id field

If you push button the exam date combo box is activated

this combo box is used when you want to
choose the students who entered the exam of this course in a chosen date the
activate button code is:

cmbExamDate.setEditable(true);
 cmbExamDate.removeAllItems();
 try {
 String st = String.format("select exam_date
from dev.exams where course_id='%s'", courseId);
 ResultSet rs =
db.con.createStatement().executeQuery(st);
 while (rs.next()) {
 cmbExamDate.addItem(rs.getString("exam_date
"));
 }
 } catch (SQLException ex) {
 System.err.println(ex.getMessage() + "in " +
this.getClass().getName());
 }

After chosen a specific date push the choose button to
select this date and choose the students according to this
date:

 String date = cmbExamDate.getSelectedItem().toString();

79

 String examId2 = null;
 Integer studentId = 0;
 String name = null;
 Double examScore = 0.0;
 Double midTermScore = 0.0;
 Double activity = 0.0;
 Double Deg = 0.0;
 Double attendance = 0.0;
 String grade = null;
 String tableHeader[] = {"Student Name", "Mid Term
Score", "Attendance", "Activity Total Score", "Exam Score",
"Total Score", "Max Score",
 "Grade"};
 tableModel = new DefaultTableModel(null,
tableHeader);
 table = new JTable(tableModel);
 try {

 String st = String.format("select student_id "
 + "from dev.student_courses "
 + "where course_id='%s' AND"
 + " upper(status)='%s' ", courseId,
"CURRENTLY ENROLLED");
 ResultSet rs =
db.con.createStatement().executeQuery(st);
 while (rs.next()) {
 studentId = rs.getInt("student_id");
 String st1 = String.format("select
first_name,middle_name,last_name from dev.students where
student_id='%d'", studentId);
 ResultSet rs2 =
db.con.createStatement().executeQuery(st1);
 if (rs2.next()) {
 name = String.format("%s %s %s",
rs2.getString("first_name"), rs2.getString("middle_name"),
rs2.getString("last_name"));
 }
 String st2 = String.format("select
attendance_pct,"
 + "activity_score"
 + "from dev.student_courses"
 + "where course_id='%s' AND
student_id='%d'", courseId, studentId);
 String midTerm=String.format("select score
from dev.student_exams where exam_id="

80

 + "select midterm_id from
dev.student_courses where course_id='%s' AND
student_id='%d' AND exam_date='%s'",
 courseId,studentId,date);
 String exam=String.format("select score
from dev.student_exams where exam_id="
 + "select final_id from
dev.student_courses where course_id='%s' AND
student_id='%d' AND exam_date='%s'",
 courseId,studentId,date);
 ResultSet rs1 =
db.con.createStatement().executeQuery(st2);
 ResultSet rs11 =
db.con.createStatement().executeQuery(midTerm);
 ResultSet rs21 =
db.con.createStatement().executeQuery(exam);
 if (rs1.next() && (rs11.next()) &&
(rs21.next())) {

 midTermScore =
rs11.getDouble("midterm_id");
 attendance =
rs1.getDouble("attendance_pct") * 10;
 activity =
rs1.getDouble("activity_score");
 examScore = rs21.getDouble("score");
 String st3 = String.format("select
score from dev.student_exams where student_id='%d'",
studentId);
 ResultSet rs7 =
db.con.createStatement().executeQuery(st3);
 if (rs7.next());
 Deg = rs7.getDouble("score");

 if (Deg < 50) {
 grade = "F";
 }
 if ((50 <= Deg) && (Deg < 55)) {
 grade = "D";
 }
 if ((55 <= Deg) && (Deg < 60)) {
 grade = "D+";
 }
 if ((60 <= Deg) && (Deg < 65)) {
 grade = "C-";
 }

81

 if ((65 <= Deg) && (Deg < 70)) {
 grade = "C";
 }
 if ((70 <= Deg) && (Deg < 75)) {
 grade = "C+";
 }
 if ((75 <= Deg) && (Deg < 80)) {
 grade = "B-";
 }
 if ((80 <= Deg) && (Deg < 85)) {
 grade = "B";
 }
 if ((85 <= Deg) && (Deg < 90)) {
 grade = "B+";
 }
 if ((90 <= Deg) && (Deg < 95)) {
 grade = "A-";
 }
 if ((95 <= Deg) && (Deg < 100)) {
 grade = "A";
 }

 }
 tableModel.addRow(new Object[]{name,
midTermScore, attendance, activity, examScore, Deg, 100,
grade});
 }
 jScrollPane1.setViewportView(table);
 } catch (SQLException ex) {
 System.err.println(ex.getMessage() + "in " +
this.getClass().getName());
 }

82

Chapter 6
Ahmed Saad Contribution

Graduate Module

In the coding of the Graduate module the Java Persistence Query Language is
used.

JPQL

The Java Persistence Query Language (JPQL) is a platform-independent object-
oriented query language defined as part of the Java Persistence API
specification.
JPQL is used to make queries against entities stored in a relational database. It
is heavily inspired by SQL, and its queries resemble SQL queries in syntax, but
operate against JPA entity objects rather than directly with database tables.
In addition to retrieving objects (SELECT queries), JPQL supports bulk UPDATE
and DELETE queries.

Role of the Graduate

The Graduate can view some data in Tables from the database & can edit his
contact information.
The Graduate can view the archive and can Edit some data in his archive by
using the following buttons (new, delete, refresh, save) in order to be able to
update his contact information which facilitates the communication with his
colleagues.

83

A SNAPSHOT OF THE GRADUATE ARCHIVE

A SNAPSHOT OF THE GRADUATE ARCHIVE WHICH ALLOWS
THE EDITING OF THE CONTACT INFORMATION

84

The Graduate can view the list of professors and courses in order to be updated
with the new trends in his technology researches.

A SNAPSHOT OF THE LIST OF PROFESSORS

A SNAPSHOT OF THE LIST OF COURSES

85

FOR THE STUDENT ARCHIVE (VIEW WITHOUT EIDTING)

The @NamedQueries:

For example the following @NamedQuery annotation defines a query whose

name is " StudentArchive.findAll" that retrieves all the StudentArchive objects in

the database

[@NamedQuery (name = "StudentArchive.findAll", query =

"SELECT s FROM StudentArchive s"),].

Every @NamedQuery annotation is attached to exactly one entity class and

attaching multiple named queries to the same entity class requires wrapping

them in a @NamedQueries annotation.

In the following select queries i use the path expressions, such as s.

enrollment Year, which referred to as projection. The field values are extracted

from (or projected out of) entity objects to form the query results.

For example here in the below queries s.gpa where s represents a Student

Archive entity object uses the GPA persistent field in the Student Archive class to

navigate to the associated GPA entity object.

The @NamedQuries are

@Entity
@Table (name = "STUDENT_ARCHIVE", catalog = "", schema =
"DEV")
@NamedQueries({ @NamedQuery(name =
"StudentArchive.findAll", query = "SELECT s FROM
StudentArchive s"),
@NamedQuery(name = "StudentArchive.findByEnrollmentYear",
query = "SELECT s FROM StudentArchive s WHERE
s.enrollmentYear = :enrollmentYear"),
@NamedQuery(name = "StudentArchive.findByTerminationYear",
query = "SELECT s FROM StudentArchive s WHERE
s.terminationYear = :terminationYear"),

86

@NamedQuery(name =
"StudentArchive.findByReasonOfTermination", query = "SELECT
s FROM StudentArchive s WHERE s.reasonOfTermination =
:reasonOfTermination"),
@NamedQuery(name = "StudentArchive.findByFirstName", query
= "SELECT s FROM StudentArchive s WHERE s.firstName =
:firstName"),
@NamedQuery(name = "StudentArchive.findByMiddleName", query
= "SELECT s FROM StudentArchive s WHERE s.middleName =
:middleName"),
@NamedQuery(name = "StudentArchive.findByLastName", query =
"SELECT s FROM StudentArchive s WHERE s.lastName =
:lastName"),
@NamedQuery(name = "StudentArchive.findByEmail", query =
"SELECT s FROM StudentArchive s WHERE s.email = :email"),
@NamedQuery(name = "StudentArchive.findByMobileNo", query =
"SELECT s FROM StudentArchive s WHERE s.mobileNo =
:mobileNo"),
@NamedQuery(name = "StudentArchive.findByAddrStreet", query
= "SELECT s FROM StudentArchive s WHERE s.addrStreet =
:addrStreet"),
@NamedQuery(name = "StudentArchive.findByAddrCity", query =
"SELECT s FROM StudentArchive s WHERE s.addrCity =
:addrCity"),
@NamedQuery(name = "StudentArchive.findByAddrState", query
= "SELECT s FROM StudentArchive s WHERE s.addrState =
:addrState"),
@NamedQuery(name = "StudentArchive.findByAddrCountry",
query = "SELECT s FROM StudentArchive s WHERE s.addrCountry
= :addrCountry"),
@NamedQuery(name = "StudentArchive.findByProjectScore",
query = "SELECT s FROM StudentArchive s WHERE
s.projectScore = :projectScore"),
@NamedQuery(name = "StudentArchive.findByGpa", query =
"SELECT s FROM StudentArchive s WHERE s.gpa = :gpa")}) .
The annotations are defined as follows
@Column (name = "ENROLLMENT_YEAR")
private Short enrollmentYear;
@Column(name = "TERMINATION_YEAR")
private Short terminationYear;
@Column(name = "REASON_OF_TERMINATION")
private String reasonOfTermination;
@Column(name = "FIRST_NAME")
private String firstName;
@Column(name = "MIDDLE_NAME")
private String middleName;
@Basic(optional = false)

87

@Column(name = "LAST_NAME")
private String lastName;
@Basic(optional = false)
@Column(name = "EMAIL")
private String email;
@Id
@Basic(optional = false)
@Column(name = "MOBILE_NO")
private Long mobileNo;
@Column(name = "ADDR_STREET")
private String addrStreet;
@Column(name = "ADDR_CITY")
private String addrCity;
 @Column(name = "ADDR_STATE")
 Private String addrState;
 @Column(name = "ADDR_COUNTRY")
 private String addrCountry;
 @Column(name = "PROJECT_SCORE")
 private BigDecimal projectScore;
 @Column(name = "GPA")
 private BigDecimal gpa;

WITH GETTER AND SETTER METHODS AS FOLLOWS

public StudentArchive() {
 }
 public StudentArchive(Long mobileNo) {
 this.mobileNo = mobileNo;
 }
 public StudentArchive(Long mobileNo, String lastName,
String email) {
 this.mobileNo = mobileNo;
 this.lastName = lastName;
 this.email = email;
 }
 public Short getEnrollmentYear() {
 return enrollmentYear;
 }
 public void setEnrollmentYear(Short enrollmentYear) {
 Short oldEnrollmentYear = this.enrollmentYear;
 this.enrollmentYear = enrollmentYear;
 changeSupport.firePropertyChange("enrollmentYear",
oldEnrollmentYear, enrollmentYear);
 }
 public Short getTerminationYear() {
 return terminationYear;
 }

88

 public void setTerminationYear(Short terminationYear) {
 Short oldTerminationYear = this.terminationYear;
this.terminationYear = terminationYear;
changeSupport.firePropertyChange("terminationYear",
oldTerminationYear, terminationYear);
 }
public String getReasonOfTermination() {
return reasonOfTermination;
 }
public void setReasonOfTermination(String
reasonOfTermination) {
String oldReasonOfTermination = this.reasonOfTermination;
this.reasonOfTermination = reasonOfTermination;
changeSupport.firePropertyChange("reasonOfTermination",

oldReasonOfTermination, reasonOfTermination);

 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 String oldFirstName = this.firstName;
 this.firstName = firstName;
 changeSupport.firePropertyChange("firstName",
oldFirstName, firstName);
 }
 public String getMiddleName() {
 return middleName;
 }
 public void setMiddleName(String middleName) {
 String oldMiddleName = this.middleName;
this.middleName = middleName;
changeSupport.firePropertyChange("middleName",
oldMiddleName, middleName);
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 String oldLastName = this.lastName;
 this.lastName = lastName;
 changeSupport.firePropertyChange("lastName",
oldLastName, lastName);
 }
 public String getEmail() {
 return email;

89

 }
 public void setEmail(String email) {
 String oldEmail = this.email;
 this.email = email;
 changeSupport.firePropertyChange("email", oldEmail,
email);
 }
 public Long getMobileNo() {
 return mobileNo;
 }
 public void setMobileNo(Long mobileNo) {
 Long oldMobileNo = this.mobileNo;
 this.mobileNo = mobileNo;
 changeSupport.firePropertyChange("mobileNo",
oldMobileNo, mobileNo);
 }
 public String getAddrStreet() {
 return addrStreet;
 }
 public void setAddrStreet(String addrStreet) {
 String oldAddrStreet = this.addrStreet;
 this.addrStreet = addrStreet;
 changeSupport.firePropertyChange("addrStreet",
oldAddrStreet, addrStreet);
 }
 public String getAddrCity() {
 return addrCity;
 }
 public void setAddrCity(String addrCity) {
 String oldAddrCity = this.addrCity;
 this.addrCity = addrCity;
 changeSupport.firePropertyChange("addrCity",
oldAddrCity, addrCity);
 }
 public String getAddrState() {
 return addrState;
 }
 public void setAddrState(String addrState) {
 String oldAddrState = this.addrState;
 this.addrState = addrState;
 changeSupport.firePropertyChange("addrState",
oldAddrState, addrState);
 }

 public String getAddrCountry() {
 return addrCountry;
 }

90

 public void setAddrCountry(String addrCountry) {
 String oldAddrCountry = this.addrCountry;
 this.addrCountry = addrCountry;
 changeSupport.firePropertyChange("addrCountry",
oldAddrCountry, addrCountry);
}
 public BigDecimal getProjectScore() {
 return projectScore;
 }
 public void setProjectScore(BigDecimal projectScore) {
 BigDecimal oldProjectScore = this.projectScore;
 this.projectScore = projectScore;
 changeSupport.firePropertyChange("projectScore",
oldProjectScore, projectScore);
 }
 public BigDecimal getGpa() {
 return gpa;
 }
 public void setGpa(BigDecimal gpa) {
 BigDecimal oldGpa = this.gpa;
 this.gpa = gpa;
 changeSupport.firePropertyChange("gpa", oldGpa, gpa);}

Class Grd_stdAboutBox

java.lang.Object
 java.awt.Component
 java.awt.Container
 java.awt.Window
 java.awt.Dialog
 javax.swing.JDialog
 grd_std.Grd_stdAboutBox

All Implemented Interfaces

java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable, javax.accessibility.Accessible,
javax.swing.RootPaneContainer, javax.swing.WindowCons

Nested Class Summary
Nested classes/interfaces inherited from class javax.swing.JDialog
javax.swing.JDialog.AccessibleJDialog
Nested classes/interfaces inherited from class java.awt.Dialog

91

java.awt.Dialog.AccessibleAWTDialog, java.awt.Dialog.ModalExclusionType,
java.awt.Dialog.ModalityType
Nested classes/interfaces inherited from class java.awt.Window
java.awt.Window.AccessibleAWTWindow
Nested classes/interfaces inherited from class java.awt.Container
java.awt.Container.AccessibleAWTContainer
Nested classes/interfaces inherited from class java.awt.Component
java.awt.Component.AccessibleAWTComponent,
java.awt.Component.BaselineResizeBehavior,
java.awt.Component.BltBufferStrategy, java.awt.Component.FlipBufferStrategy

Method Detail
closeAboutBox
@Action
public void closeAboutBox()
Class Grd_stdApp
java.lang.Object
 org.jdesktop.application.AbstractBean
 org.jdesktop.application.Application
 org.jdesktop.application.SingleFrameApplication
 grd_std.Grd_stdApp
public class Grd_stdApp
extends org.jdesktop.application.SingleFrameApplication

Nested Class Summary
Nested classes/interfaces inherited from class
org.jdesktop.application.Application
org.jdesktop.application.Application.ExitListener

Constructor Summary
Grd_stdApp()

Method Summary
protected void configureWindow(java.awt.Window root)

 This method is to initialize the specified window by
injecting resources.

static Grd_stdApp getApplication()
 A convenient static getter for the application instance.

static void main(java.lang.String[] args)
 Main method launching the application.

92

file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/Grd_stdApp.html#main(java.lang.String[])
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/Grd_stdApp.html#getApplication()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/Grd_stdApp.html
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/Grd_stdApp.html#configureWindow(java.awt.Window)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/Grd_stdApp.html#Grd_stdApp()

protected void startup()
 At startup create and show the main frame of the
application.

Class Grd_stdView
java.lang.Object
 org.jdesktop.application.AbstractBean
 org.jdesktop.application.View
 org.jdesktop.application.FrameView
 grd_std.Grd_stdView
public class Grd_stdView
extends org.jdesktop.application.FrameView
The application's main frame.
Constructor Summary
Grd_stdView(org.jdesktop.application.SingleFrameApplication app)

Method Summary
 void showAboutBox()
Constructor Detail

Grd_stdView
public Grd_stdView(org.jdesktop.application.SingleFrameApplication app)
Method Detail

showAboutBox
@Action
public void showAboutBox()

Class StudentArchive
java.lang.Object
 grd_std.StudentArchive
All Implemented Interfaces:

java.io.Serializable
@Entity
public class StudentArchive
extends java.lang.Object
implements java.io.Serializable

Constructor Summary
StudentArchive()

93

file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#StudentArchive()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/Grd_stdView.html#showAboutBox()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/Grd_stdView.html#Grd_stdView(org.jdesktop.application.SingleFrameApplication)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/Grd_stdApp.html#startup()

StudentArchive(java.lang.Long mobileNo)

StudentArchive(java.lang.Long mobileNo, java.lang.String lastName, java.lang.String email

Method Summary
 voidaddPropertyChangeListener(java.beans.PropertyChangeListener lis

tener)

 booleanequals(java.lang.Object object)

 java.lang.StringgetAddrCity()

 java.lang.StringgetAddrCountry()

 java.lang.StringgetAddrState()

 java.lang.StringgetAddrStreet()

 java.lang.StringgetEmail()

 java.lang.ShortgetEnrollmentYear()

 java.lang.StringgetFirstName()

 java.math.BigDecimalgetGpa()

 java.lang.StringgetLastName()

 java.lang.StringgetMiddleName()

 java.lang.LonggetMobileNo()

 java.math.BigDecimalgetProjectScore()
 java.lang.StringgetReasonOfTermination()

 java.lang.ShortgetTerminationYear()

 inthashCode()

94

file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#hashCode()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getTerminationYear()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getReasonOfTermination()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getProjectScore()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getMobileNo()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getMiddleName()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getLastName()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getGpa()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getFirstName()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getEnrollmentYear()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getEmail()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getAddrStreet()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getAddrState()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getAddrCountry()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#getAddrCity()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#equals(java.lang.Object)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#addPropertyChangeListener(java.beans.PropertyChangeListener)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#StudentArchive(java.lang.Long, java.lang.String, java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#StudentArchive(java.lang.Long)

 voidremovePropertyChangeListener(java.beans.PropertyC
hangeListener listener)

 voidsetAddrCity(java.lang.String addrCity)

 voidsetAddrCountry(java.lang.String addrCountry)

 voidsetAddrState(java.lang.String addrState)

 voidsetAddrStreet(java.lang.String addrStreet)

 voidsetEmail(java.lang.String email)

 voidsetEnrollmentYear(java.lang.Short enrollmentYear)

 voidsetFirstName(java.lang.String firstName)

 voidsetGpa(java.math.BigDecimal gpa)

 voidsetLastName(java.lang.String lastName)

 voidsetMiddleName(java.lang.String middleName)
 voidsetMobileNo(java.lang.Long mobileNo)

 voidsetProjectScore(java.math.BigDecimal projectScore)

 voidsetReasonOfTermination(java.lang.String reasonOfTermi

nation)

 voidsetTerminationYear(java.lang.Short terminationYear)

 java.lang.StringtoString()

Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Detail

StudentArchive
public StudentArchive()

StudentArchive
public StudentArchive(java.lang.Long mobileNo)

95

file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#toString()
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setTerminationYear(java.lang.Short)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setReasonOfTermination(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setProjectScore(java.math.BigDecimal)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setMobileNo(java.lang.Long)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setMiddleName(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setLastName(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setGpa(java.math.BigDecimal)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setFirstName(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setEnrollmentYear(java.lang.Short)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setEmail(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setAddrStreet(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setAddrState(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setAddrCountry(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#setAddrCity(java.lang.String)
file:///C:/Users/Amro/Documents/NetBeansProjects/grd_std/dist/javadoc/grd_std/StudentArchive.html#removePropertyChangeListener(java.beans.PropertyChangeListener)

StudentArchive
public StudentArchive(java.lang.Long mobileNo,
 java.lang.String lastName,
 java.lang.String email)
Method Detail

getEnrollmentYear
public java.lang.Short getEnrollmentYear()

setEnrollmentYear
public void setEnrollmentYear(java.lang.Short enrollmentYear)

getTerminationYear
public java.lang.Short getTerminationYear()

setTerminationYear
public void setTerminationYear(java.lang.Short terminationYear)

getReasonOfTermination
public java.lang.String getReasonOfTermination()

setReasonOfTermination
public void setReasonOfTermination(java.lang.String reasonOfTermination)

getFirstName
public java.lang.String getFirstName()

setFirstName
public void setFirstName(java.lang.String firstName)

getMiddleName
public java.lang.String getMiddleName()

setMiddleName
public void setMiddleName(java.lang.String middleName)

getLastName
public java.lang.String getLastName()

setLastName
public void setLastName(java.lang.String lastName)

getEmail
public java.lang.String getEmail()

96

setEmail
public void setEmail(java.lang.String email)

getMobileNo
public java.lang.Long getMobileNo()

setMobileNo
public void setMobileNo(java.lang.Long mobileNo)

getAddrStreet
public java.lang.String getAddrStreet()

setAddrStreet
public void setAddrStreet(java.lang.String addrStreet)

getAddrCity
public java.lang.String getAddrCity()

setAddrCity
public void setAddrCity(java.lang.String addrCity)

getAddrState
public java.lang.String getAddrState()

setAddrState
public void setAddrState(java.lang.String addrState)

getAddrCountry
public java.lang.String getAddrCountry()

setAddrCountry
public void setAddrCountry(java.lang.String addrCountry)

getProjectScore
public java.math.BigDecimal getProjectScore()

setProjectScore
public void setProjectScore(java.math.BigDecimal projectScore)

getGpa
public java.math.BigDecimal getGpa()

setGpa
public void setGpa(java.math.BigDecimal gpa)

97

hashCode
public int hashCode()

Overrides:
hashCode in class java.lang.Object

equals
public boolean equals(java.lang.Object object)

Overrides:
equals in class java.lang.Object

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

addPropertyChangeListener
public void addPropertyChangeListener(java.beans.PropertyChangeListen-
er listener)

removePropertyChangeListener
public void removePropertyChangeListener(java.beans.PropertyChangeListen-
er listener)

For the student Archive(view with Editing)

The running application with a graphical user interface (GUI) that has the

following features:

• Ability to view and modify values in nine columns of the StudentArchive

database.

• Menu items.

• Persistence of its window state between sessions. When you close the ap-

plication, the window position and size are remembered. So when you reopen

the application, the window opens in the same position as it was when you

closed it as well as the column's size are been remembered.

The connection between the master table (a JTable component) and the

database is handled with a combination of the following mechanisms:-

98

The StudentArchive.java entity class, which is used to read and write data to the

StudentArchive database table. Entity classes are a special type of class that

enable you to interact with databases through Java code. Entity classes use Java

annotations to map class fields to database columns.

• The META-INF/persistence.xml file, which defines a connection

between the database and the entity class. This file is also known as the

persistence unit.

• Using beans binding to connect the properties of the entity class with the

properties of the JTable component.

• The entityManager, query, and list objects, which are defined in the Stu-

dentArchive View class:-

o The entity manager object is used to retrieve and commit data within the

defined persistence unit scope.

o The query object defines how the particular data collection is retrieved from

the entity manager.

o The list object is an observable collection that holds the data from the query.

An observable collection is a special kind of collection on which you can place

a listener to find out when changes to the collection have been made.

Every Graduate has the ability for editing his own archive only.
The WHERE clause adds filtering capability to the FROM-SELECT structure.
Only StudentArchive objects for which the Boolean expression evaluates to
TRUE are passed to the SELECT clause and then collected as query results.
@NamedQuery (name = "StudentArchive.findByUsername", query = "SELECT s
FROM StudentArchive s WHERE s.username =: user")}

The use of binding

Package org.jdesktop.beansbinding Provides support for defining properties and
creating bindings between sets of two properties.
properties

99

Property defines a uniform way to access the value of a property. A typical
property implementation allows you to create an immutable representation of a
way to derive some property from a source object. As such, all methods of this
class take a source object as an argument.

A property implementation may, however, be designed such that the property
itself is a mutable thing that stores a property value. In such a case, the property
implementation may ignore the source object. property implementations should
clearly document their behavior in this regard.

You can listen for changes in the state of a property by registering Property State
Listeners on the property.

The method in org.jdesktop.beansbinding that return ELProperty
ELProperty.create(java.lang.String expression)
Creates an instance of ELProperty for the given expression.

AutoBinding

An implementation of Binding that automatically syncs the source and target by
refreshing and saving according to one of three update strategies. The update
strategy is specified for an Auto Binding on creation, and is one of:

AutoBinding.UpdateStrategy.READ_ONCE

AutoBinding.UpdateStrategy.READ

AutoBinding.UpdateStrategy.READ_WRITE

In my code the READ_WRITE startegy is used which Tries to keep both the
source and target in sync with each other.

Refresh and Save Methods:

save()

Fetches the value of the target property for the target object and sets it as the
value of the source property for the source object.

refresh()

Fetches the value of the source property for the source object and sets it as
the value of the target property for the target object.

100

The Graduate can edit specific columns (only in his archive) and this is
achieved by binding only the editable columns.
JTableBinding class extends Auto Binding and Binds a List of objects to act as
the rows of a JTable. Each object in the source List represents one row in the
JTable. Mappings from properties of the source objects to columns are created by
adding ColumnBinding to a JTableBinding. Instances of JTableBinding are obtained
by calling one of the createJTableBinding methods in the SwingBindings class. The
JTable target of a JTableBinding acts as a live view of the objects in the source List.
JTableBinding listens to the properties specified for the ColumnBindings, for all
objects in the List, and updates the values displayed in the JTable in response to
change. All successful edits made to JTable cell values are immediately
committed back to corresponding objects in the source List.

The code
org.jdesktop.swingbinding.JTableBinding jTableBinding =
org.jdesktop.swingbinding.SwingBindings.createJTableBinding
(org.jdesktop.beansbinding.AutoBinding.UpdateStrategy.READ_
WRITE, list, masterTable);
 org.jdesktop.swingbinding.JTableBinding.ColumnBindi
ng columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${firstName}"));
 columnBinding.setColumnName("First Name");
 columnBinding.setColumnClass(String.class);
 columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${middleName}"));
 columnBinding.setColumnName("Middle Name");
 columnBinding.setColumnClass(String.class);
 columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${lastName}"));
 columnBinding.setColumnName("Last Name");
 columnBinding.setColumnClass(String.class);
 columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${email}"));
 columnBinding.setColumnName("Email");
 columnBinding.setColumnClass(String.class);
 columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${mobileNo}"));
 columnBinding.setColumnName("Mobile No");
 columnBinding.setColumnClass(Long.class);
 columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${addrStreet}"));

101

 columnBinding.setColumnName("Addr Street");
 columnBinding.setColumnClass(String.class);
 columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${addrCity}"));
 columnBinding.setColumnName("Addr City");
 columnBinding.setColumnClass(String.class);
 columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${addrState}"));
 columnBinding.setColumnName("Addr State");
 columnBinding.setColumnClass(String.class);
 columnBinding =
jTableBinding.addColumnBinding(org.jdesktop.beansbinding.EL
Property.create("${addrCountry}"));
 columnBinding.setColumnName("Addr Country");
 columnBinding.setColumnClass(String.class);
 bindingGroup.addBinding(jTableBinding);
An example action method showing how to create asynchronous task running on
background and how to show their progress
@Action
public Task refresh() {
return new RefreshTask(getApplication());
}

private class RefreshTask extends Task {
RefreshTask(org.jdesktop.application.Application app) {
super(app);
}
@SuppressWarnings("unchecked")
@Override protected Void doInBackground() {
try {
setProgress(0, 0, 4);
setMessage("Rolling back the current changes...");
setProgress(1, 0, 4);
entityManager.getTransaction().rollback();
setProgress(2, 0, 4);

setMessage("Starting a new transaction...");
entityManager.getTransaction().begin();
setProgress(3, 0, 4);

setMessage("Fetching new data...");
java.util.Collection data = query.getResultList();
for (Object entity : data) {
entityManager.refresh(entity);
}

102

setProgress(4, 0, 4);

list.clear();
list.addAll(data);
} catch(InterruptedException ignore) { }
return null;
}
@Override protected void finished() {
setMessage("Done.");
setSaveNeeded(false);
}
}
Class ArchiveAboutBox
java.lang.Object

java.awt.Component
java.awt.Container
java.awt.Window
java.awt.Dialog
javax.swing.JDialog
archive.ArchiveAboutBox

All Implemented Interfaces
java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable, javax.accessibility.Accessible,
javax.swing.RootPaneContainer, javax.swing.WindowConstants

public class ArchiveAboutBox
extends javax.swing.JDialog

Nested Class Summary

Nested classes/interfaces inherited from class javax.swing.JDialog
javax.swing.JDialog.AccessibleJDialog

Nested classes/interfaces inherited from class java.awt.Dialog
java.awt.Dialog.AccessibleAWTDialog, java.awt.Dialog.ModalExclusionType,
java.awt.Dialog.ModalityType

Nested classes/interfaces inherited from class java.awt.Window
java.awt.Window.AccessibleAWTWindow

Nested classes/interfaces inherited from class java.awt.Container
java.awt.Container.AccessibleAWTContainer

103

Nested classes/interfaces inherited from class java.awt.Component
java.awt.Component.AccessibleAWTComponent,
java.awt.Component.BaselineResizeBehavior,
java.awt.Component.BltBufferStrategy, java.awt.Component.FlipBufferStrategy

Class Archive.extends
java.lang.Object implements Serializable
Serialized Fields

changeSupport
java.beans.PropertyChangeSupport changeSupport

enrollmentYear
java.lang.Short enrollmentYear

terminationYear
java.lang.Short terminationYear

reasonOfTermination
java.lang.String reasonOfTermination

firstName
java.lang.String firstName

middleName
java.lang.String middleName

lastName
java.lang.String lastName

email
java.lang.String email

mobileNo
java.lang.Long mobileNo

addrStreet
java.lang.String addrStreet

addrCity
java.lang.String addrCity

addrState
java.lang.String addrState

104

addrCountry
java.lang.String addrCountry

projectScore
java.math.BigDecimal projectScore

gpa
java.math.BigDecimal gpa

username
java.lang.String username
Class ArchiveApp
java.lang.Object

org.jdesktop.application.AbstractBean
org.jdesktop.application.Application
org.jdesktop.application.SingleFrameApplication
archive.ArchiveApp

public class ArchiveApp
extends org.jdesktop.application.SingleFrameApplication
The main class of the application.
Nested Class Summary
Nested classes/interfaces inherited from class org.jdesktop.application.Application
org.jdesktop.application.Application.ExitListener

Method Detail

startup
protected void startup()

At startup create and show the main frame of the application.
Specified by:
startup in class org.jdesktop.application.Application

configureWindow
protected void configureWindow(java.awt.Window root)

This method is to initialize the specified window by injecting resources.
Windows shown in our application come fully initialized from the GUI
builder, so this additional configuration is not needed.
Overrides:
configureWindow in class org.jdesktop.application.SingleFrameApplication

getApplication
public static ArchiveApp getApplication()

A convenient static getter for the application instance.
Returns:
the instance of ArchiveApp

105

file:///C:/Users/Amro/Documents/NetBeansProjects/Archive/dist/javadoc/archive/ArchiveApp.html

main
public static void main(java.lang.String[] args)

Main method launching the application.
Class StudentArchive
java.lang.Object

archive.StudentArchive

All Implemented Interfaces
java.io.Serializable

public class StudentArchive
extends java.lang.Object
implements java.io.Serializable

public class StudentArchive
extends java.lang.Object
implements java.io.Serializable

Method Detail

getEnrollmentYear
public java.lang.Short getEnrollmentYear()

setEnrollmentYear
public void setEnrollmentYear(java.lang.Short enrollmentYear)

getTerminationYear
public java.lang.Short getTerminationYear()

setTerminationYear
public void setTerminationYear(java.lang.Short terminationYear)

getReasonOfTermination
public java.lang.String getReasonOfTermination()

setReasonOfTermination
public void setReasonOfTermination(java.lang.String reasonOfTermination)

getFirstName
public java.lang.String getFirstName()

setFirstName
public void setFirstName(java.lang.String firstName)

getMiddleName
public java.lang.String getMiddleName()

106

setMiddleName
public void setMiddleName(java.lang.String middleName)

getLastName
public java.lang.String getLastName()

setLastName
public void setLastName(java.lang.String lastName)

getEmail
public java.lang.String getEmail()

setEmail
public void setEmail(java.lang.String email)

getMobileNo
public java.lang.Long getMobileNo()

setMobileNo
public void setMobileNo(java.lang.Long mobileNo)

getAddrStreet
public java.lang.String getAddrStreet()

setAddrStreet
public void setAddrStreet(java.lang.String addrStreet)

getAddrCity
public java.lang.String getAddrCity()

setAddrCity
public void setAddrCity(java.lang.String addrCity)

getAddrState
public java.lang.String getAddrState()

setAddrState
public void setAddrState(java.lang.String addrState)

getAddrCountry
public java.lang.String getAddrCountry()

setAddrCountry
public void setAddrCountry(java.lang.String addrCountry)

107

getProjectScore
public java.math.BigDecimal getProjectScore()

setProjectScore
public void setProjectScore(java.math.BigDecimal projectScore)

getGpa
public java.math.BigDecimal getGpa()

setGpa
public void setGpa(java.math.BigDecimal gpa)

getUsername
public java.lang.String getUsername()

setUsername
public void setUsername(java.lang.String username)

equals
public boolean equals(java.lang.Object object)

Overrides:
equals in class java.lang.Object

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

addPropertyChangeListener
public void

addPropertyChangeListener
(java.beans.PropertyChangeListener listener)

removePropertyChangeListener
public void

removePropertyChangeListener
(java.beans.PropertyChangeListener listener)

108

Bibliography

1- Oracle® Database: Recovery Guide
2- Oracle® Database: SQL Language Reference 11g Release 1
3- Database System concepts(Silberschatz, Korth and Sudarshan)
4- Oracle/SQL Tutorial(Michael Gertz)
5- Oracle® Database: Administrator's Guide 11g Release 1.
6- Oracle® Java Tutorials

109

	Thesis Title
	Administration and Student Affairs System
	Project Team:

